NAC2023-Hxx

Noliac plate stack actuator NAC2023-Hxx (height in $\mathrm{mm}-\mathrm{Hxx}$) is based on the multilayer actuator NAC2023 and can be stacked to match you requirements. The standard range of NAC2023-Hxx is produced in a height between $4-150 \mathrm{~mm}$. The plate stack provides a stroke up to. $244.2 \mu \mathrm{~m}$ and blocking force up to 9450 N depending on the height of the stack.

SPECIFICATIONS

Attributes

Length / outer diameter
Width / inner diameter
Max width / outer diameter max
Height

Operating voltage, max.
Free stroke, max.
Blocking force, max.
Capacitance
Stiffness
Maximum operating temperature
Material
Unloaded resonance frequency
Electrodes

Value

15 mm
15 mm
16.8 mm
$4-150 \mathrm{~mm}$

200 V
$3.3-244.2 \mu \mathrm{~m}$
9450 N
870-64600 nF
2864-39 N/ $\mu \mathrm{m}$
$150{ }^{\circ} \mathrm{C}$
NCE51F
$>248 \mathrm{k}-7 \mathrm{k} \mathrm{Hz}$
Screen-printed Ag and soldered bus wire (option: glued connections)

Remarks

Stack options

Height

4 mm
6 mm
8 mm

Stroke

$3.3 \mu \mathrm{~m}$
$6.6 \mu \mathrm{~m}$
$9.9 \mu \mathrm{~m}$

Tolerance

$+0.50 /-0.30 \mathrm{~mm}$
$+0.50 /-0.30 \mathrm{~mm}$
$+/-0.2 \mathrm{~mm}$ or 1% (whichever is largest)
+/-15\%
$+/-20 \%$
+/-15\%
$+/-20 \%$

Capacitance

870 nF
1750 nF
2620 nF

10 mm
12 mm
14 mm
16 mm
18 mm
20 mm
22 mm
24 mm
26 mm
28 mm
30 mm
32 mm
34 mm
36 mm
38 mm
40 mm
42 mm
44 mm
46 mm
48 mm
50 mm
52 mm
54 mm
56 mm
58 mm
60 mm
62 mm
64 mm
66 mm
68 mm
70 mm
72 mm
74 mm
76 mm
78 mm
80 mm
82 mm
84 mm
86 mm
88 mm
90 mm
92 mm
94 mm
96 mm
98 mm
100 mm
102 mm
104 mm
$13.2 \mu \mathrm{~m}$
$16.5 \mu \mathrm{~m}$
$19.8 \mu \mathrm{~m}$
$23.1 \mu \mathrm{~m}$
$26.4 \mu \mathrm{~m}$
$29.7 \mu \mathrm{~m}$
$33 \mu \mathrm{~m}$
$36.3 \mu \mathrm{~m}$
$39.6 \mu \mathrm{~m}$
$42.9 \mu \mathrm{~m}$
$46.2 \mu \mathrm{~m}$
$49.5 \mu \mathrm{~m}$
$52.8 \mu \mathrm{~m}$
$56.1 \mu \mathrm{~m}$
$59.4 \mu \mathrm{~m}$
$62.7 \mu \mathrm{~m}$
$66 \mu \mathrm{~m}$
$69.3 \mu \mathrm{~m}$
$72.6 \mu \mathrm{~m}$
$75.9 \mu \mathrm{~m}$
$79.2 \mu \mathrm{~m}$
$82.5 \mu \mathrm{~m}$
$85.8 \mu \mathrm{~m}$
$89.1 \mu \mathrm{~m}$
$92.4 \mu \mathrm{~m}$
$95.7 \mu \mathrm{~m}$
$99 \mu \mathrm{~m}$
$102.3 \mu \mathrm{~m}$
$105.6 \mu \mathrm{~m}$
$108.9 \mu \mathrm{~m}$
$112.2 \mu \mathrm{~m}$
$115.5 \mu \mathrm{~m}$
$118.8 \mu \mathrm{~m}$
$122.1 \mu \mathrm{~m}$
$125.4 \mu \mathrm{~m}$
$128.7 \mu \mathrm{~m}$
$132 \mu \mathrm{~m}$
$135.3 \mu \mathrm{~m}$
$138.6 \mu \mathrm{~m}$
$141.9 \mu \mathrm{~m}$
$145.2 \mu \mathrm{~m}$
$148.5 \mu \mathrm{~m}$
$151.8 \mu \mathrm{~m}$
$155.1 \mu \mathrm{~m}$
$158.4 \mu \mathrm{~m}$
$161.7 \mu \mathrm{~m}$
$165 \mu \mathrm{~m}$
$168.3 \mu \mathrm{~m}$

3490 nF
4370 nF
5240 nF
6110 nF
6980 nF
7860 nF
8730 nF
9600 nF
10480 nF
11350 nF
12220 nF
13100 nF
13970 nF
14840 nF
15710 nF
16590 nF
17460 nF
18330 nF
19210 nF
20080 nF
20950 nF
21830 nF
22700 nF
23570 nF
24440 nF
25320 nF
26190 nF
27060 nF
27940 nF
28810 nF
29680 nF
30560 nF
31430 nF
32300 nF
33170 nF
34050 nF
34920 nF
35790 nF
36670 nF
37540 nF
38410 nF
39290 nF
40160 nF
41030 nF
41900 nF
42780 nF
43650 nF
44520 nF

106 mm
108 mm
110 mm
112 mm
114 mm
116 mm
118 mm
120 mm
122 mm
124 mm
126 mm
128 mm
130 mm
132 mm
134 mm
136 mm
138 mm
140 mm
142 mm
144 mm
146 mm
148 mm
150 mm
$171.6 \mu \mathrm{~m}$
45400 nF
$174.9 \mu \mathrm{~m}$
$178.2 \mu \mathrm{~m}$
$181.5 \mu \mathrm{~m}$
$184.8 \mu \mathrm{~m}$
$188.1 \mu \mathrm{~m}$
$191.4 \mu \mathrm{~m}$
$194.7 \mu \mathrm{~m}$
$198 \mu \mathrm{~m}$
$201.3 \mu \mathrm{~m}$
$204.6 \mu \mathrm{~m}$
$207.9 \mu \mathrm{~m}$
$211.2 \mu \mathrm{~m}$
$214.5 \mu \mathrm{~m}$
$217.8 \mu \mathrm{~m}$
$221.1 \mu \mathrm{~m}$
$224.4 \mu \mathrm{~m}$
$227.7 \mu \mathrm{~m}$
$231 \mu \mathrm{~m}$
$234.3 \mu \mathrm{~m}$
$237.6 \mu \mathrm{~m}$
$240.9 \mu \mathrm{~m}$
$244.2 \mu \mathrm{~m}$

46270 nF 47140 nF 48020 nF 48890 nF 49760 nF 50630 nF 51510 nF 52380 nF 53250 nF 54130 nF 55000 nF 55870 nF 56750 nF 57620 nF 58490 nF
59360 nF
60240 nF
61110 nF
61980 nF
62860 nF
63730 nF
64600 nF

Direction of movement

Mounting

The actuators are usually grinded on top and bottom surfaces (perpendicular to the direction of expansion) in order to obtain flat and parallel surfaces for mounting. The actuators may be mounted either by mechanical clamping or gluing.

Avoiding short circuit can either be achieved by:

- Adding Kapton foil on the metallic surfaces.
- Having inactive ceramic plates between the actuator and the metal plate.

Stacked actuators are manufactured with top and bottom insulating ceramic end-plates.

If glued, it is important to ensure a very thin glue line between the actuator and the substrate. It is recommended that a pressure, e.g. 2-5 MPa , is applied during the curing process.

To avoid significant loss of performance, the mounting of the actuators should avoid mechanical clamping and/or gluing on the sides of the actuator.

During manufacturing or handling, minor chips on the end-plates can appear. Minor chips cannot be avoided, but such chips do not affect performance.

Electrical connection

External electrodes

The external electrodes are screen printed silver as standard. Other materials, e.g. gold or silver/palladium are available on request. The positive electrode is indicated by a black spot.

Electrical connection to the external electrodes can be achieved by mechanical contacts, soldering, gluing with electrically conductive glues or wire bonding.

Mechanical connections

Mechanical connections can be arranged by e.g. copper springs contacted to the external electrodes. It is recommended to use external electrodes of gold in order to eliminate oxidation of the electrodes.

Soldering

Soldering electrical wires to the screen-printed silver electrode makes an excellent and time-stable connection. In order to avoid challenges with wetting the solder on the silver surface, always clean the external electrodes with a glass brush or steel wool.

The actuators may only be stressed axially. Tilting and shearing forces must be avoided.

The actuators without preload are sensitive to pulling forces. It is recommended to apply a pre-load in order to optimize the performances of the actuators.

For linear actuators it is recommended not to use a metal plate on top and bottom in order to avoid short circuit.

The force must be applied on the full surface of the actuator in order to assure a good load distribution.

Epoxy glues are well suited for gluing piezoceramics.

When you order actuators from Noliac, you can have wires fitted to save time and money. However, you should consider these parameters, when you select a wire for connection:

- Operation voltage
- Intensity of current
- Operating temperature
- Environment for example vacuum

We recommend Teflon wires

Teflon wires can stand temperatures above $200^{\circ} \mathrm{C}$, whereas PVC wires only resist temperatures up to 80 ${ }^{\circ}$ C. In tough operating conditions or in vacuum, it is recommended always to use Teflon isolated wire to guarantee the proper performance of PZT-elements.

Wire thickness (AWG)

The wire thickness (AWG) is determined by the current that has to be transmitted to and from the PZT-element. The required current is determined by the capacitance of the PZT-element, the maximum driving frequency and the maximum voltage Up-p.

	Option A01	Option A02	Option C
Type	28 AWG Teflon	28 AWG Teflon	Custom
Length	$200+/-10 \mathrm{~mm}$	$200+/-10 \mathrm{~mm}$	To be defined
Position	Middle of the actuator	Middle of the actuator	To be defined
Direction	Perpendicular to the height	Toward top	To be defined

Type A01

Type A02

