Advances in Piezoelectric Actuator Technologies for Defense Systems

Charles Mangeot
Multinational BMD conference
Copenhagen
7 September 2011

Contents

- Background
 - Noliac Group
 - Piezoelectric technology
- Amplified actuator
 - Ex: active vibration control
- Piezoelectric Actuator Drive (PAD)
 - Ex: beam steering
- Conclusions

Noliac Group

- HQ in Denmark, 2 divisions in Czech Republic,
 R&D facility in Munich
- 100 employees
- Piezoelectric technology and products
 - Actuators, micro positioning, vibration control...
 - <u>Sensors</u>, vibration, shock, microphones...
 - <u>Generators</u>, energy harvesters, impact...
 - Transducers, flow, distance, sonar...
 - Piezoelectric Actuator Drives, aerospace, medical, robotics...

Product Overview

Noliac is specialized in a high degree of customization

The Piezoelectric effect

Direct effect (sensor function)

• Converse effect (actuator function)

Amplified actuator for Active Vibration Control

References:

- IMechE conference, London 2009
- Actuator, Bremen 2010

Amplified actuator - Background

- Active rotor control
- REACT project
- UK Technology Strategy Board (TSB) funded

Amplified actuator - Requirements

- High frequency (30 50 Hz)
- Small displacements (mm range)
- High force capability (several 100N)
- Environment
 - Centrifugal loads
 - Temperature
 - Vibrations...
- Optimised mass for a given performance
 - Energy density

Operating principle

Construction

- Lightweight materials
- Compact assembly

Results: Energy density

• 35 to 42% improvement compared to state of the art

Advantages

- Preloaded structure
- Large proportion of active material
- Simple mechanical parts
- Temperature stable
- Low inertia high bandwidth
- Stable middle position

Applications

- Active vibration control
- Primary / secondary surface control
 - High speed applications
- Direct drive valves

Piezo Actuator Drive (PAD)

PAD technology transfer

- PAD Piezoelectric Actuator Drive
- Developed by Siemens 2000 2008
- A partner needed for commercialisation
- Noliac A/S acquired the PAD technology from Siemens AG in 2010
 - Patents
 - Fully equipped test laboratories
 - PAD prototypes and demonstrators
 - Training of engineers
- Motor currently being developed for Siemens

PAD principle

• Implementation:

 Displacement generated by piezo elements

- Signals with 90° phase

40%

Angle (degrees)

PAD - A Scalable Technology

PAD – Reduced Complexity

PAD demonstrator: Beam steering

- 2 axes
- 1 PAD motor per axis
- No additional gearbox
- No feedback system
- 1 control box
- Synchronised movement

PAD demonstrator - Beam steering

- Key motor performance
 - Repeatability < 2 arcseconds
 - Step size 0,3 arcseconds
 - Speed up to 60rpm
 - <1ms to full speed

PAD motor characteristics

- Characteristics of interesting
 - Smart load sensing without torque sensors
 - High torque without gearbox (typ. 6,5 Nm)
 - Overload protection
 - No power consumption when holding a load
 - Not affected by strong magnetic fields
 - No magnetic stray fields

PAD System components and configurations

PAD – Other applications

- Antenna adjustment
- Servo valve
- Fin control

Conclusions

- Increasing interest in piezo solutions
- Continued research
- Increasing capabilities
 - New solutions
 - New processes
 - Make your system:
 - Smarter
 - Smaller, lighter
 - More effective

Thank you for your attention

Contact: info@noliac.com

