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Abstract: 

The Preisach model is a powerful tool for modelling the hysteresis phenomenon on multilayer piezo actuators 

under large signal excitation. In this paper, measurements at different temperatures are presented, showing the 

effect on the density of the Preisach matrix. An interpretation is presented, aiming at defining a temperature-

dependent phenomenological model of hysteresis for a better understanding of the non-linear effects in piezo 

actuators. 
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Introduction 

Quasi-static multilayer piezoelectric actuators are 

generally used in quasi-static applications under large 

signal excitation. In these conditions, the hysteresis 

effect is pronounced and can become a limitation, in 

particular for positioning applications. 

To address this, two main approaches are possible: 

sensor-based or model-based. In the sensor-based 

approach, a sensor (displacement, force…) is used to 

close the loop and effectively linearize the 

piezoelectric effect. Although it provides excellent 

results, this approach is not always preferred or even 

possible, because of cost, size or performance. In the 

model-based approach, the behaviour of the actuator 

is characterised and this model is inverted to provide 

open-loop control of the actuator. This approach has 

become very popular with the availability of powerful 

real-time controllers. Several models have been 

proposed [1, 2], among others Ishlinskii hysteresis 

model [3], Maxwell resistive capacitor-based 

lumped-parameter model [4], variable time relay 

hysteresis model [5] and Preisach model [6]. 

The Preisach model [7, 8] is a phenomenological 

approach that can accurately describe any hysteresis 

behaviour. It is often the preferred approach for 

piezoelectric actuators and its large number of 

degrees of freedom makes it possible to adjust very 

precisely to experimental data. 

 

The Preisach model 

In a simple Preisach model, the hysteresis effect is 

decomposed into an infinity of individual elements 

called hysterons. These elements act as relays with an 

activation threshold α and a de-activation threshold β. 

A geometrical interpretation of the hysteron plane 

greatly facilitates the understanding of the Preisach 

model in general. In this plane, a so-called Preisach 

triangle �� is defined, which represents the region of 

operation of the actuator, bordered by 

���� , ���	 , 
��� 	�
�	
��	 . Only the surface above 

the diagonal given by � = 
  has any physical 

meaning and therefore ��  is an upper triangular 

surface. The elementary hysterons have a direct 

correlation to the half-plane in such a way that at any 

point in time �� is divided into two surfaces �� and 

�� representing the (�, 
) pairs for which the relay 

elements are active or inactive, respectively.  

Thereby, for a monotonic increase of an input �(�), 
the input-output plane shows an ascending hysteresis 

branch, while the ��  half-plane ’fills up’ from the 

bottom to the horizontal line defined by � =
���	|	�� ≤ �(�)}. Similarly, a monotonic decrease in 

input will then determine the surface to ’empty’, but 

this process is orthogonal to the one for increasing 

input. Therefore the ’filled’ space ��  will empty 

starting from the right towards the vertical line 

defined by 
 = �
�	|	
� ≥ �(�)} . Thereby, a 

stochastic input signal with several extrema will be 

represented as a combination of ’filled’ and ’emptied’ 

areas on the triangle, delimited by a boundary 

staircase layer, denoted L. The problem then boils 

down to finding the area under the obtained staircase 

curve. This is illustrated in Fig. 1.  

 

The standard equation for this type of model is: 

�(�) = 	 ��(�, 
) !"#�,  �$(�)	�
	��
!%"

 

Where �  is the model output, �  represents a 

weighting matrix that mathematically particularizes 

the model to fit different hysteresis shapes and  !" 

represents the hysteron elements that can take values 

from the set �−1, 1}. 
Terms on the diagonal (α = β) dictate the general 

trend of the curve without hysteresis while the density 
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within the triangle (α > β) corresponds to hysteresis 

effects. 

 

 
 

 Fig. 1: Illustration of Preisach model  

 

In many applications, the actuator will be required to 

operate over a wide temperature range, which will 

affect the Preisach triangle. In such case, working 

with a constant Preisach model will induce errors in 

the open-loop control of the actuator. 

In the present paper, a Preisach model is applied to 

the hysteresis relationship between dielectric charge 

and voltage (electric field). This set of parameters was 

chosen because it can be further processed in an 

electrostrictive behaviour model [9, 10]. However 

other parameter sets such as displacement versus 

voltage can be considered directly. 

 

Experiment design 

In our experiments, a multilayer piezoelectric element 

was submitted to a variable voltage while its 

dielectric charge was measured using a Sawyer-

Tower circuit [11]. The element was placed in an 

oven (Fig. 2), allowing measurement between 25 and 

200°C by steps of 25°C. 

 

 
 

 Fig. 2: Experiment setup  

 

Experimentation was performed using different input 

signals. In the end we selected a sinusoidal signal at 

100Hz with a DC offset of 50V (corresponding to 

1,5kV/mm, half the maximum peak-peak amplitude) 

and an amplitude decreasing by steps. Each wave is 

repeated to provide a statistical basis. The input signal 

is illustrated on Fig. 3. The first activation cycle at 

maximum voltage effectively “resets” the initial state 

of the Preisach matrix. 

 

 
 

 Fig. 3: Voltage input signal 

 

From these measurements we used two different 

methods to evaluate the Preisach matrices: analytical 

and recursive. 

The analytical method is based on the following 

process: 

• Identification of voltage reversal points. These 

define separation lines within the α-β plane, 

creating subdivisions of the plane. The selected 

input signal presents 40 reversal points, 

therefore a 39*39 discrete Preisach matrix can 

be built. 

• Interpolation of charge values when the input 

signal crosses the separation lines. 

• Starting from the smallest loop, charge 

differences can be calculated. The charge value 

in the Preisach matrix corresponds to the 

measured charge increase minus the charge 

increase measured over the same range in 

smaller loops (in other words the sum of the 

terms already identified in the same line for 

increasing voltage or in the same column for 

decreasing voltage). 

• Charge density values (in C/V2) are calculated 

by dividing each charge value by the area of 

the subdivision. 

The recursive method relies on setting up a 

constrained least-squares minimization problem of 

the form: 

�(�, 
) = 	 min+(!,") ||	Γ#�,  �$(�) − 	�(�)	||-, 
 

Where �  represents the weight matrix, Γ  is the 

Preisach operator, �  is the current input,  � 

represents the initial relay state vector while � is the 

measured system output.  

Thereby, the square of the difference between 

modelled and measured outputs is iteratively 

minimized until the error lies below a set threshold. A 

weight matrix �(�, 
) is obtained, which contains the 

hysteretic nonlinearities specific to the modelled 

system. This method is implemented in MATLAB. 

The two methods give comparable results. 

 

Results 

The graphs on Figs. 4 to 6 are 3D representations of 

the identified Preisach matrix at respectively 25, 100 

and 200°C (using the analytical method). The scaling 
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is identical for comparison and the colour scale is 

deliberately finer in the lower values. 

 

 
 

 Fig. 4: Hysteresis matrix at 25°C 

 

 
 

 Fig. 5: Hysteresis matrix at 100°C 

 

 
 

 Fig. 6: Hysteresis matrix at 200°C 

 

The density is characteristic of soft-doped PZT 

actuators, with most of the hysteresis present at low αvalues. These correspond to the “belly” of the 

hysteresis curve. In other words the P-E curves tend 

to get more elongated at high field as previously 

observed in [12]. 

Considering how the density evolves with 

temperature, two observations can be made: 

• The density along the diagonal increases rapidly 

with temperature. This corresponds to the well-

known increase of capacitance with temperature 

and is analysed in more details in [13]. 

• The density within the triangle increases only 

marginally with temperature. This indicates that, 

in proportion, hysteresis decreases at high 

temperature. 

 

Analysis 

The Preisach model can also be interpreted in terms 

of energy, where a given hysterion needs an 

activation energy corresponding to a voltage α to 

change state and returns to its original state if energy 

falls below a level corresponding to a voltage β. In a 

physical approach, the “switching” can correspond 

to domain re-orientation or domain wall movement; 

however the Preisach approach being 

phenomenological, the cause of the hysteresis is not 

relevant. Still, the effect of high temperature will be 

to facilitate the activation and de-activation of these 

“switches”. In other words, hysterons shift towards 

the origin in the Preisach matrix. 

This phenomenon has been studied for 

electromagnetics, for which it was proposed to use 

temperature-dependent scale factors for α  and β 

[14]. However in the case of piezoelectric actuators, 

the relationship still needs to be formalised. 

Nevertheless, it can be considered that both the 

Preisach density and the state line are affected by 

temperature. Using the same example as in Fig 1, if 

the element is subsequently submitted to a 

temperature change from θ0 to θ1, the state line will 

shift (Fig 7). Therefore the poling state of the element 

will change since a certain area (a) will switch to S-. 

 

 
 

 Fig. 7: Illustration of the impact of 

temperature on the state line 
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Also, it would make sense to extend the Preisach 

plane in the β < 0 range. This range would 

correspond to remanent poling. Obviously, the 

behaviour at θ1 will be different from θ0. But in 

addition, after return to θ0 the initial state of the 

element will not be the same. Some remanent poling 

may be “lost” (S-). However it can be easily recovered 

at the first activation. This phenomenon is often 

observed on soft-doped PZT, often in the fact that an 

actuator will provide a large free displacement at the 

first activation. 

 

Extension of the model 

Due to the adoption of a simple Preisach model, the 

proposed approach cannot include time-dependent 

phenomena such as frequency dependency and creep. 

This is contrary to observations. More advanced 

variants of the Preisach model have been proposed 

that include frequency dependency by adding 
5�
56  as a 

parameter for the weighing function � . Also the 

model can be extended to describe “viscous” effects 

such as creep by adding a random noise on the input 

signal [6]. 

However these implementations are complex and do 

not catch the full extent of poling dynamics as 

described for example by [15]. It is proposed to apply 

such behaviour models to individual hysterons, 

leading to time-dependency both in terms of creep 

and frequency dependency.  

 

Control aspects 

A temperature-dependent Preisach model is a very 

useful element of a reliable control circuit for a 

piezoelectric actuator. Several configurations can be 

considered: 

In a sensor-less configuration (temperature unknown), 

this model is however of little interest. The controller 

will have to assume a certain temperature in order to 

estimate the state of the actuator. 

If the temperature information is available, the 

controller would be capable of constantly adapting 

the Preisach matrix, thereby keeping an image of the 

state of the actuator, for example its free displacement. 

It is also possible to sense the charge absorbed by the 

actuator. In such a case, the controller can compare 

the actual charge to the model and deduct the 

temperature of the actuator. 

Finally, a combination (temperature + charge 

measurement) would allow the controller to deduct 

two variables such as position and external force. 

Combinations with displacement or force sensors are 

of course also possible, each additional parameter 

allowing the estimation of a variable or a 

consolidation of the estimates. 

 

Conclusions 

The target of this paper is to propose a temperature-

dependent phenomenological model of hysteresis. 

Depending on the adopted sensor configuration, this 

model can be used within a control loop in order to 

determine the state of an actuator (free displacement), 

its temperature or the generated force. 

Essentially, the target is to reach a better 

characterisation of the non-linearity of piezoelectric 

actuators and a better understanding of non-linear 

effects, leading to improved control capabilities. 

Measurements give an indication of how the Preisach 

density evolves with temperature, with a general 

scaling as well as a shift of the hysterons towards the 

origin. 

The adoption of a simple Preisach model implies rate-

independent behaviour, however it would be possible 

to extend it to a rate-dependent model. 
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