

NCE46

Noliac piezoceramic material NCE46 is a hard doped material, which can be exposed to high electrical and mechanical stresses.

SPECIFICATIONS

Properties	Symbol & unit	NCE46
DIELECTRIC PROPERTIES (tolerances +/- 10%)		
Relative Dielectric Constant	ε ^T 33 / ε0	1300
Dielectric Loss Factor	tgδ [10 ⁻⁴]	30
Dielectric Loss Factor at 400V/mm	tgδ [10 ⁻⁴]	
ELECTROMECHANICAL PROPERTIES (tolerances +/- 5%)		
Electromech. Coupling Factors**	k _p	0.57
	k31	0.33
	k ₃₃	0.68
	kt	0.47
Piezoelectric Charge Constants	-d ₃₁ [10 ⁻¹² C/N]	130
	d ₃₃ [10 ⁻¹² C/N]	330
Piezoelectric Voltage Constants	-g ₃₁ [10 ⁻³ Vm/N]	11
	g ₃₃ [10 ⁻³ Vm/N]	28
Frequency Constants	N ^E _p [m/s]	2230
	N ^D t [m/s]	2040
	N ^E ₁ [m/s]	1500
	N ^D ₃ [m/s]	1800
PHYSICAL PROPERTIES (tolerances +/- 5%)		
Mechanical Quality Factor	Qm	>1000
Density	$\rho [10^3 kg/m^3]$	7.7
Elastic Compliances	s ^E ₁₁ [10 ⁻¹² m ² /N]	13
	s ^E ₃₃ [10 ⁻¹² m ² /N]	20
Curie Temperature	T _c [°C]	330

^{*} For multilayer components only

The values listed are for reference purposes only and cannot be applied unconditionally to all shapes and

^{**} Measured in accordance with standard EN 50324

dimensions. Values vary depending on the actual shape, surface finish, shaping process and post-processing of the product. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left($