

NCE57

Piezoelectric materials NCE51 and NCE57 are standard soft materials, particularly suitable for actuators and low power non-resonant applications in which high coupling factor and /or high charge sensitivity are requested.

SPECIFICATIONS

	1	
Properties	Symbol & unit	NCE57*
DIELECTRIC PROPERTIES (tolerances +/- 10%)		
Relative Dielectric Constant	ε ^T 33/ε0	1800
Dielectric Loss Factor	tgδ [10 ⁻⁴]	170
Dielectric Loss Factor at 400V/mm	tgδ [10 ⁻⁴]	
ELECTROMECHANICAL PROPERTIES (tolerances +/- 5%)		
Electromech. Coupling Factors**	k _p	0.59
	k31	0.33
	k ₃₃	0.70
	kı	0.47
Piezoelectric Charge Constants	-d ₃₁ [10 ⁻¹² C/N]	170
	d ₃₃ [10 ⁻¹² C/N]	425
Piezoelectric Voltage Constants	-g ₃₁ [10 ⁻³ Vm/N]	11
	g ₃₃ [10 ⁻³ Vm/N]	27
Frequency Constants	N ^E _p [m/s]	2010
	N ^D t [m/s]	1950
	N ^E ₁ [m/s]	1400
	N ^D ₃ [m/s]	1500
PHYSICAL PROPERTIES (tolerances +/- 5%)		
Mechanical Quality Factor	Qm	80
Density	ρ [10 ³ kg/m ³]	7.7
Elastic Compliances	s ^E ₁₁ [10 ⁻¹² m ² /N]	17
	s ^E ₃₃ [10 ⁻¹² m ² /N]	23
Curie Temperature	T _c [°C]	350

^{*} For multilayer components only

The values listed are for reference purposes only and cannot be applied unconditionally to all shapes and

^{**} Measured in accordance with standard EN 50324

dimensions. Values vary depending on the actual shape, surface finish, shaping process and post-processing of the product. $\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left($