CTS CorporationCTS Corporation

Driving & control

DC drive (static operation)

Piezoelectric elements are essentially capacitors. Power is only required to change the voltage on the piezo element. The relationship of current and voltage for a piezoelectric actuator is the following:  

I = dQ/dt = C x dU/dt

Where:

I=Current

Q=Charge

C=Capacitance 

U=voltage 

t=time  

To maintain a piezoelectric actuator in its state of activation, only the leakage current has to be supplied. At temperatures well below the Curie temperature the internal resistance of piezoelectric actuator is in the order of 1010 Ohms. Consequently, under static operation virtually no current is drawn nor power consumed to maintain a state of activation (the high internal resistance reduces leakage current to micro-amp or sub-micro-amp range).

AC drive (dynamic operation)

Electrical consideration
Piezoelectric actuators can provide accelerations of thousands of g's and are well suited for dynamic applications. Piezo actuators require electrical power/current only during dynamic operations. The amplifier output current and rise time determine the maximum operating frequency of the piezoelectric system. The following equations describe the relationship between amplifier output current, voltage and operating frequency. They help determine the minimum specifications of a piezo amplifier for dynamic operation: 

Average current required for sinusoidal operation:

Iavg = f x C x U p-p 

Peak current required for sinusoidal operation at maximum frequency:

Imax = ∏ x fmax x C x U p-p

Where:

I avg=  average amplifier source/sink current

Imax = peak amplifier source/sink current 

fmax = maximum operating frequency 

C = PZT actuator capacitance 

U p-p = peak-peak drive voltage 

f = operating frequency 

AC drive (dynamic operation)

Self-heating
An important aspect of dynamically operating piezoelectric actuators is self-heating. Piezoelectric ceramics dissipate energy in the form of heat proportional to the dissipation factor (tan δ), the tangent of the loss angle for the material. The mechanism is similar to that by which any elastic material such as a rubber band becomes hot when stretched repeatedly. For comparison between the materials, the dissipation factor is usually specified for low electrical fields and at 1000 Hz. Soft piezoelectric materials have large dissipation factors in the order of 2% to 4% and hard piezoelectric materials have dissipation factors on the order of 0.5 %. 

The power dissipated by a piezoelectric element with a capacitance C, driven at a voltage V and frequency f can be estimated from the equation below:

P= ∏/ 4 x f x C x tan(δ) x U p-p 2 

The resultant temperature rise will depend on a factor such as the heat capacity of the device and what means exist for transferring that heat to the surroundings by convection, conduction and radiation. With soft piezoceramic materials, the capacitance may increase rapidly with temperature due to increase in the dielectric constant approaching the Curie temperature. Consequently caution is necessary when running at high frequency to avoid thermal runaway by self-heating that might damage the actuator. A temperature sensor mounted on the piezoelectric actuator is suggested for monitoring purposes. 

Pulse drive (switched operation)

An important feature of piezoelectric actuators is their capability to produce extreme forces and acceleration rates, which can be used for fast switching of valves or to produce mechanical shocks. In such cases, the actuator should switch in as short time as possible between two distinct levels, whereas the exact motion profile between these levels is not important. The minimum rising time of an actuator can be derived from its elastic properties. A short electrical pulse excites the resonant oscillation of the actuator and the minimum rising time tp can be estimated by the following equation:

tp = tr/3 

Where:

tr = period time of actuator's resonance

tp= minimum rising time in pulsed operation 

Pulse drive actuators are typically operated in open-loop mode, but special care must be taken to suppress overshoot and mechanical ringing that frequently occur after the pulse voltage is applied (if the voltage rises fast enough to excite a resonant oscillation in the piezoelectric actuator). Quick and precise positioning is difficult to achieve, and moreover can lead to the destruction of the actuator due to large tensile stress associated with overshoot. In such cases, compressive bias stress should be employed on the device through clamping mechanisms such as a helical spring or a plate spring.  

Another solution to suppress this problem is to reduce significantly the mechanical vibration overshoot and ringing by choosing a suitable rising time. Indeed, when a piezoelectric actuator is driven by trapezoidal pulse, the mechanical ringing is significantly reduced when the rise time is adjusted exactly to the resonance period of the piezoelectric actuator. 

Pulse operation may require peak powers up to the kilowatt range with currents of 10 to 100 Amperes. In these cases it is reasonable not to use analogue amplifiers but electronic pulse switches.

A piezo partner - what do we mean by that

Request for quote

We give you a competitive advantage by using our extensive knowledge to customize and optimize your piezo products. Thus, we will be your long-term piezo partner. Send your request today.

First name *
Last name *
Company *
Industry *
Email *
Phone
Country *
City
Choose product
Description
Please enter the result of the equation:
7 + 8 =
Close
Request for quote

Search tool

Performance Dimensions
Value
Max operating voltage / V
Min
Min free stroke / µm
Min
Min estimated blocking force / N
Min
Min
Max
Length or outer diameter / mm
Min
Max
Width or inner diameter / mm
Min
Max
Max height / mm
Max
Product category
Choose here...
  • Plate actuators
  • Plate stacks
  • Ring actuators
  • Ring stacks
  • Plate benders
  • Ring benders
  • Shear plate actuators
  • Shear stacks
  • 2D actuators
  • High temperature stacks
  • Damage tolerant stacks
Material
Choose here...
  • NCE51
  • NCE51F
  • NCE46
  • NCE57
  • NCE40
  • NCE41
  • NCE53
  • NCE55
  • NCE56
  • NCE59
  • NCE80
  • NCE81
  • 0,00
  • AA
  • Material
  • Type
  • 0.00
Search Clear
Next

Search on Noliac